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Functional Relations in Stokes Multipliers��Fun
with x6+: x2 Potential1
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We consider eigenvalue problems in quantum mechanics in one dimension.
Hamiltonians contain a class of double well potential terms, x6+:x2, for example.
The space coordinate is continued to a complex plane and the connection
problem of fundamental system of solutions is considered. A hidden
Uq( gl@(2 | 1)) structure arises in ``fusion relations'' of Stokes multipliers. With
this observation, we derive coupled nonlinear integral equations which charac-
terize the spectral properties of both \: potentials simultaneously.

KEY WORDS: Spectral determinants; Stokes multipliers; fusion hierarchy;
nonlinear integral equations.

1. INTRODUCTION

The eigenvalue problem of a one-body 1D Schro� dinger operator is the
most fundamental subject in quantum mechanics. Still, it provides vivid
materials of research.

Besides a few exceptions where eigenvalues and wavefunctions are
obtainable explicitly, one may employ several tools for analysis, e.g., the
perturbation theory, the variational approach and so on. Among them, the
exact WKB method(1�8) is unique in the sense that it provides non-pertur-
bative information on the analytical structure of wavefunctions and spec-
tral properties. We analytically continue x, original coordinate variable, to
a complex number. The whole complex plane is divided into several
sectors. In each sectors, there are two linearly independent solutions,
as Schro� dinger operator is the 2nd order differential operator. They are
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referred to as the fundamental system of solutions (FSS) in the sector.(18)

The relations among FSS in different sectors are central issue in the
connection problem. The importance of the problem and consequently
Stokes multipliers, in the WKB problem has been deeply recognized and
emphasized in early '80s, especially in ref. 1.

Recently, a remarkable link has been established among the spectral
determinants of a 1D Schro� dinger operator associated with the anharmonic
oscillator, transfer matrices and Q operators in CFT possessing Uq( sl@(2)).(9�12)

Here the spectral determinants imply D(E )=>Ej # eigenvalue (1&E�E j) and
its generalizations. A curious interplay between D(E ) and generalized
Stokes multipliers is also found.(1, 10) In view of solvable models, a striking
fact is that they share the same functional relations with transfer matrices
in the fusion hierarchy possessing Uq( sl@(2)).(10, 13�15) This allows for
applications of the strong machineries in the study of solvable models(14�27)

to the studies of Stokes multipliers, spectral determinants and so on.
Several results have been explicitly obtained for the anharmonic oscillator
problem, and are extended to higher differential analogues.(16, 17)

In this note, we consider an anharmonic oscillator perturbed by a
lower power potential term. It belongs to a class of potentials discussed
generally in refs. 6 and 7 with the exact resolution method. To be precise,
we consider the eigenvalue problem,

H(x, :) 9k(x)=\&
d 2

dx2+x2M+:xM&1+ 9k(x)

=Ek9k(x) (1)

Throughout this report we set �=1 and M>1.
The spectral problem concerning this Hamiltonian turns out to be in

a category to which one can apply the tools in solvable models.
The sign of : seems to be crucial if one considers the operator (1) on

the real axis.
We will not expect much difference from the ``pure'' anharmonic

oscillator when :>0, while we do expect change for :<0 as the potential
develops the double well.

It will be shown, however, that the negative : and the positive :
problems are not separable when we discuss the global connection
problem. Roughly speaking, the negative : problem is coupled to the
positive : problem by crossing a border line of neighboring sectors and
vice versa. See Section 2 for precise arguments. It may be then reasonable
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Fig. 1. An anharmonic oscillator perturbed by a positive or a negative perturbation term.

to consider a two-fold connection problem (crossing two adjacent lines), or
more generally, relations between sectors separated by even multiples of
border lines. Some of the Stokes multipliers, in the generalized connection
problem, possess expressions corresponding to the eigenvalues of the
(fusion) transfer matrices of the 3 state Perk�Schulz (PS) model(28�30) of
which underlying symmetry is Uq(gl@(2 | 1)). Others can not be directly
equated with the (fusion) transfer matrices but have relations with the 3
state PS model as well. Thus we conclude that the perturbation :xM&1

breaks the Uq( sl@(2)) symmetry of the ``pure'' anharmonic oscillator but it
brings the new symmetry Uq(gl@(2 | 1)). The deformation parameter q is
related to the exponent of the perturbation by q=exp(i (?�(M+1))).
Through these findings, we can derive the nonlinear integral equations
(NLIE) which characterize the energy levels of both the negative : problem
and the positive : problem simultaneously.

The paper is organized as follows. In the next section, we will explore
symmetries of solutions to (1). The precise definition of sectors is given.
The connection problem is addressed in Section 3. Certain components in
fusion Stokes matrices are identified with eigenvalues of fusion transfer
matrices associated to Uq(gl@(2 | 1)). The spectral determinant is explicitly
parameterized by FSS in a sector. The coupled NLIE are then derived in
Section 4, which determine energy levels. We will perform analytical and
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numerical checks on the consistency of our result in Section 5. Section 6 is
devoted to summary and discussions on open problems.

2. ASYMPTOTIC EXPANSION AND SYMMETRY OF
SOLUTIONS

Let ,(x, :, E ) be an entire function of (x, :, E ) and a solution to
H(x, :) ,(x, :, E )=E,(x, :, E ).

The solution, which decays exponentially at x � �, is of primary
interest. By employing the argument in ref. 31, we immediately find its
asymptotic behavior,

,(x, :, E )tx&M�2&:�2 exp \&
xM+1

M+1+ (2)

�x,(x, :, E )txM�2&:�2 exp \&
xM+1

M+1+ (3)

The validity of the above expansion is not restricted to the real axis, but
extends to the wedge, |arg x|<3?�(2M+2).(13, 31)

The second order linear differential equation admits another indepen-
dent solution. To specify it, or to deal with the global problem, it is con-
venient to extend x to the complex plane as mentioned in introduction.
Then, as in the case of :=0, the solution exhibits a symmetry by rotating
the complex x plane by a specific angle.

The direct calculation proves the following.

Theorem 1. Let ,(x, :, E ) be the above solution and q=
exp(i (?�(M+1))). Then ,(q&1x, qM+1:, q2E ) is also the solution to the
differential equation, H(x, :) ,=E,.

This is the desired second solution which grows exponentially on the
positive real axis: x&M�2+:�2 exp(xM+1�(M+1)) for x � �. We note that
qM+1:=&:. This deserves an attention. As mentioned in introduction, the
potential assumes the completely different structure for : positive and :
negative on the real axis. The rotation in the complex x plane by angle
?�(M+1), however, couples these two problems. Thus we shall treat the
Hamiltonians with \: simultaneously. Similar pairing of differential equa-
tions is found for the positive and the negative angular momentum terms
in a class of 3rd order differential equations.(16)

This observation is crucial in our approach and can be generalized
further. To state it, we prepare some notations.
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Fig. 2. The complex plane is divided into sectors. S0 and S1 are indicated as examples.

Hereafter : always takes a non-negative real value. By H(=)(x, :), we
mean the Schro� dinger operator,

&
d 2

dx2+x2M+=:xM&1

where ==\1.
Let Sk be a sector in the plane satisfying

}arg x&
k?

M+1 }�
?

2M+2

The FSS depends on the sector. We conveniently define

y (=)
j :=

q j�2&=:j�2

- 2i
,(xq& j, =:, q2jE )

Theorem 2. For the H(=)(x, :), the FSS in the sector Sj is given by
( y (=j )

j , y (=j+1)
j+1 ) where =j==(&1) j.

For :=0 case, this has been argued in refs. 13 and 10. It is easily
checked that y (=j )

j is the sub-dominant solution in Sj ; it tends to zero as x
tends to infinity along in any direction in the sector.

In the next section, we consider the global connection problem of
these FSS in the complex x plane.

1033Functional Relations in Stokes Multipliers



File: 822J 285606 . By:XX . Date:11:12:00 . Time:10:27 LOP8M. V8.B. Page 01:01
Codes: 2041 Signs: 1093 . Length: 44 pic 2 pts, 186 mm

3. FUSION STOKES MULTIPLIERS, Uq(gl@(2 | 1)) STRUCTURE
AND SPECTRAL DETERMINANTS

We introduce the Wronskian matrix

8(=)
j (x) :=\ y (=)

j ,
�xy (=)

j ,
y (&=)

j+1

�xy (&=)
j+1 + (4)

and the Wronskian W (=)
k :=det 8 (=)

k (x).
The linear dependence of the solution can be easily verified by evaluat-

ing the Wronskian at Sj+1�2 using the asymptotic expansions (2) and (3).
The present normalization yields W (=)

k =1.
Let M (=)

j, 1 be the Stokes matrix connecting the Wronskian matrices
8(=)

j (x) and 8 (&=)
j+1 (x),

8 (=)
j (x)=8 (&=)

j+1 (x) M (=)
j, 1 (5)

It permits an explicit parameterization

M (=)
j, 1 :=\{ (=)

j ,
&1,

1
0+ (6)

where { (=)
j is referred to as the Stokes multiplier. We have two remarks.

First, the (1, 1) element is the function of : and q2jE. We omit the
dependency on :. The dependency on E is indicated by the index j. Second,
the (2, 1) element, &1, is a consequence of the present normalization of the
Wronskian.

To be more specific, we consider the operator H(+)(x, :) and start
from the positive real axis (or more generally S0). The initial FSS is
( y (+)

0 , y (&)
1 ).

Fig. 3. The FSS in S0 and S1 are related by the matrix M (+)
0, 1 .
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A linear relation follows from (5) between this FSS and ( y (&)
1 , y (+)

2 ),
the FSS at the neighboring sector S1 ,

y (+)
0 ={ (+)

0 y (&)
1 & y (+)

2 (7)

Similarly, the FSS in S2 is linked to the FSS in S1 by

y (&)
1 ={ (&)

1 y (+)
2 & y (&)

3 (8)

Judging from the upper indices which indicate the corresponding signs
of :, it may be natural to introduce a generalized Stokes matrix M (+)

0, 2

connecting FSS ( y (+)
0 , y (&)

1 ) and ( y (+)
2 , y (&)

3 ). It is simply obtained by the
matrix multiplication,

M (+)
0, 2 =M (&)

1, 1 M (+)
0, 1 =\{ (&)

1 { (+)
0 &1,

&{ (+)
0 ,

{ (&)
1

&1+ (9)

Equations (7) and (8) yield {'s in terms of y's. The (1, 1) component
in (9), hereafter denoted by T1, 1(E ), is then represented in terms of y as,

T1, 1(E )={ (&)
1 { (+)

0 &1=
y (+)

0

y (+)
2

+
y(+)

0 y (&)
3

y (+)
2 y (&)

1

+
y (&)

3

y (&)
1

(10)

The dependence of E in the rhs is implicitly indicated by indices of y. We
will comment on this representation in terms of a solvable model later.

There is another expression using both y's and �y's. This form is of
practical use in the following generalization. By applying the Cramer
formula to (5), we immediately obtain

{ (=)
j = } y (=)

j ,
�x y (=)

j ,
y (=)

j+2

�x y (=)
j+2 } (11)

Note that we use the fact that the Wronskian is normalized to be unity.
The (1, 1) entries in (9) is then given by

} y (+)
0 ,

�x y (+)
0 ,

y (&)
3

�x y (&)
3 }

One can further generalize the above result. Naturally, the ``fusion''
Stokes matrix M (+)

j, 2k is defined which relates FSS of Sj to Sj+2k . Explicitly,
it is given by
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M (+)
0, 2k=\ }

y (+)
0 ,

�x y (+)
0 ,

y (&)
2k+1

�x y (&)
2k+1 } ,

& } y (+)
0 ,

�x y (+)
0 ,

y (+)
2k

�x y (+)
2k } ,

} y (&)
1 ,

�x y (&)
1 ,

y (&)
2k+1

�x y (&)
2k+1 }

& } y (&)
1 ,

�x y (&)
1 ,

y (+)
2k

�x y (+)
2k }+ (12)

for j=0. We can prove the above using the induction on k most easily.
Similar formula holds for M (&)

0, 2k by replacing all upper indices + W &.
We are now ready to relate an entry in a fusion Stokes matrix to the

spectral determinant. Hereafter we assume M=2m&1. It follows from the
above argument that

8 (+)
2m =8 (+)

0 (M (+)
0, 2m)&1 (13)

y(+)
0 ( y (+)

2m ) stands for the subdominant solution on the positive
(negative) real axis. They tend to zero asymptotically in their proper
region, being appropriate basis for the eigenfunction. The Eq. (13) tells,
however, that y (+)

2m is combined to both y (+)
0 and y (&)

1 by rotating the com-
plex plane by &?,

y (+)
2m =(c1 y (+)

0 +c2 y (&)
1 )�det M (+)

0, 2m

c1=(M (+)
0, 2m)1, 1 , c2=&(M (+)

0, 2m)2, 1

Fig. 4. The connection of FSS on the negative and the positive real axis is accomplished
by M (+)

0, 2m .
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This is an obstacle in constructing an eigenfunction defined on the
whole real axis. The prescription is to demand that the coefficient of y (&)

1

must vanish if E is an eigenvalue. Consequently, it is proportional to the
spectral determinant.

The coefficient is essentially equal to the (2, 1) component of M (+)
0, 2m ,

and it reads in terms of the original , function as

q:(m+1)

2 } ,(x, :, E ),
�x,(x, :, E ),

,(&x, :, E )
�x ,(&x, :, E ) }

The x dependencies are spurious as the entities are products of Stokes
multipliers which are obviously x independent. We adopt the simplest choice
x=0. The coefficient is now proportional to ,(0, :, E ) �x,(x, :, E ) |x=0 .
Thus we conclude that for an eigenvalue E (+)

j of H(+)(x, :),

,(0, :, E (+)
j )=0 or �x,(x, :, E (+)

j ) |x=0=0 (14)

must hold.
We can repeat the same argument starting from H(&)(x, :) on the

positive real axis.
The above observation may lead to the identification

,(0, =:, E )tD (=)
&(E ) :=`

j

(1&E�E (=)
&, j) (15)

�x,(x, =:, E ) |x=0tD (=)
+(E ) :=`

j

(1&E�E (=)
+, j) (16)

The lower sign signifies the parity: the positive parity means a con-
tribution from symmetric wave function. The product must be taken over
eigenvalues with the corresponding parity. The total set eigenvalues [E (=)

j ]
of H(=)(x, :) consists of two subsets, [E (=)

j ]=[E (=)
+, j ] _ [E (=)

&, j ] and
D(=)(E )=D (=)

+ (E ) D (=)
& (E ).

We comment on the relation of the present result to an existing solved
model. T1, 1(E ) in (10) can be represented, utilizing (16), as

T1, 1(E )=q:&1 D (+)
& (E )

D(+)
& (q4E )

+q2: D (+)
& (E ) D (&)

& (q6E )
D (+)

& (q4E ) D (&)
& (q2E )

+q:+1 D (&)
& (q6E )

D (&)
& (q2E )

(17)

where we safely choose x=0 in the rhs.
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The above expression has similarity to the dressed vacuum form
(DVF) of the (unfused) transfer matrix for the 3-state PS model(30) with
grading (+, &, +). The latter can be found in Eq. (3.1) and (3.2) of ref. 32.
The spectral parameter v corresponds to energy in the Schro� dinger
operator, precisely, E=exp(2?v�(M+1)).

The spectral determinants have the following identification to the
eigenvalues of Baxter's Q operators,

D (+)
& (E q2j

)=Q2 \v+
j&2

2
i+

D (&)
& (E q2j

)=Q1 \v+
j&1

2
i+ .

Those with positive parity may be identified with the second solutions of
Baxter's Q operators.

The scalar factors (vacuum expectation values) fa(x), ga(x) in ref. 32
depend on the choice of the quantum space. We assume that the present
quantum space space gives the simple scalars as in (17). In this sense,

T1, 1(E ) exhibits the hidden Uq(gl@(2 | 1)) symmetry behind the present

Schro� dinger operator, just as in the Uq( sl@(2)) symmetry for :=0 problem.
This coincidence can be observed further. We have checked up to certain
value of k that the (1, 1) element and the (2, 2) element of M (+)

0, 2k coincide
with DVF of symmetric fusion transfer matrices 4 (1)

k and &4 (1)
k&1 in ref. 32,

respectively. The interpretation of the (1, 2) and the (2, 1) element, in terms
of fusion transfer matrices, is still an open problem.

One can adopt another description of T1, 1 . The (2, 1) component of
(5) results

{ (=)
0 =

�y (=)
0

�y (&=)
1

+
�y (=)

2

�y (&=)
1

(18)

Proceeding as above, we arrive at,

T1, 1(E )=q:+1 D (+)
+ (E )

D(+)
+ (q4E )

+q2: D (+)
+ (E ) D (&)

+ (q6E )
D (+)

+ (q4E ) D (&)
+ (q2E )

+q:&1 D (&)
+ (q6E )

D (&)
+ (q2E )

(19)

In the next section, we determine the energy levels by utilizing the
above results.
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4. NONLINEAR INTEGRAL EQUATIONS FOR EIGENVALUE
PROBLEM

The Bethe ansatz equations follow from the pole-free property of
T1, 1(E ) on the real E axis,

q:&1
D (&)

+ (q2E (+)
+, j)

D (&)
+ (q&2E (+)

+, j)
=q&:&1

D (+)
+ (q2E (&)

+, j )

D (+)
+ (q&2E (&)

+, j)
=&1 (20)

q:+1
D (&)

& (q2E (+)
&, j)

D (&)
& (q&2E (+)

&, j)
=q&:+1

D (+)
& (q2E (&)

&, j )

D (+)
& (q&2E (&)

&, j)
=&1 (21)

To their analysis, we apply the strong machinery in solvable models, the
method of nonlinear integral equations. Hereafter we shall confine our-
selves to the case 0�:�M where energies are nonnegative. The simple
pattern of energy spectrum permits the following simple-minded choice of
auxiliary functions,

a (=)
=$ (E ) :=q=:&=$ D (&=)

=$ (q2E )
D (&=)

=$ (q&2E )
(22)

A(=)
=$ (E ) :=1+a (=)

=$ (E ) (23)

Thus

A (=)
=$ (E (=)

=$, j )=0 (24)

Remember that =(=\1) represents the signature of the perturbation while
=$(=\1) denotes the parity.

In addition, we need some inputs about the asymptotic behaviors from
the WKB method. Fortunately, they are already available(9) as the existence
of lower power term does not alter them.

ln D (=)
\ (E )t

a0

2
(&E ) +, |E | � �, |arg (&E )|<? (25)

b0(E (=)
j ) +

t2? \j+
1
2+ , j � � (26)

+=
M+1

2M
, a0=

b0

2 sin +?
, b0=

?1�21 (1�2M )
M1 (3�2+1�2M )
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There might be several routes to reach nonlinear integral equations
among a (=)

(=$) and A (=)
(=$) . Here we choose the quickest way(9, 16, 21, 23) which

fully exploits the fact that zeros of D (=)
\ (E ) are on the positive real % axis.

In addition, we assume that there are no zeros of A (=)
\(E ) inside the narrow

strip including the positive real axis other than those from zeros of D (=)
\(E ).

Clearly we have

log a (=)
=$ (E )=

(=:&=$) ?
M+1

i+:
j

F \ E
E (&=)

=$, j +
F(E )=log

1&q2E
1&q&2E

The above assumption allows the representation of the summation
part by an integral over contour CE which surrounds the positive real axis
counterclockwise,

log a (=)
=$ (E )=

(=:&=$) ?
M+1

i+
1

2?i |CE

dE$F \ E
E$+ �E$ log A (&=)

=$ (E$) (27)

For convenience, we introduce a variable %(9) by

E=exp(%�+)�&2 &=(2M+2)&1�2+<1 \ 1
2++

which originates from the matching condition of the WKB result (25) and
the Q-operator analysis.(23, 33)

Let a (=)
=$ (%), A (=)

=$ (%) be auxiliary functions defined in (22), (23) regarded
as functions of %. Then Eq. (27) reads,

log a (=)
=$ (%)=

(=:&=$) ?
M+1

i+
1

2?i |C%

d%$ G(%&%$) �%$ log A (&=)
=$ (%$)

G(%)=log \q2 sinh(M%�(M+1)+i(?�(M+1))
sinh(M%�(M+1)&i(?�(M+1))+

where C% encircles the whole real axis counterclockwise.
For the reason which will be supplemented, we shall keep a(=)

=$ (%) in the
lower half plane but use 1�a (=)

=$ (%) in the upper half plane.
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This requirement modifies the above expression as

log a(=)
=$ (%)=

(=:&=$) ?
M+1

i&
1

2?i |
�

&�
d%1 �%G(%&%$+i0) log a (&=)

=$ (%$&i0)

+
1
?

I \|
�

&�
d%$ �%G(%&%$+i0) log A (&=)

=$ (%$&i0)+ (28)

where % is assumed to possess small negative imaginary part. The property
(a (=)

=$ (%))*=1�a (=)
=$ (%*) is employed in the above transformation.

We solve (28) in terms of log a (=)
=$ (%) to reach the final expression of

NLIE,

ln a (=)
=$ (%)= &

i
2

b0 &&2+e%+
?
2

i \&=$+=
:
M+

+2iI {|
�

&�
K1(%&%$+i0) ln A (=)

=$ (%$&i0) d%$

+|
�

&�
K2(%&%$+i0) ln A (&=)

=$ (%$&i0) d%$= (29)

The kernel functions read

K1(%)= &
1

2? |
�

&�
eiw% sinh2((?(M&1) w)�2M )

sinh ?w sinh(?w�M )
dw

K2(%)= &
1

2? |
�

&�
eiw% sinh((?(M+1) w)�2M ) sinh((?(M&1) w)�2M )

sinh ?w sinh(?w�M )
dw.

Few remarks are in order.

1. As a consequence of connection rules, the integral equations are
coupled for auxiliary functions related to the positive and the negative coef-
ficient of xM&1.

2. On the other hand, equations with different parities are decoupled.

3. The constants are determined from the consistency by putting
% � &�. The : dependence is only summarized in these constants.

4. The first term in the rhs is determined so that we recover the result
from the WKB method (25) by dropping contributions of integrals.
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Clearly, a (=)
=$ (%) is bounded in the upper-half plane. This explains our choice

of appropriate half planes for auxiliary functions.

The eigenvalues [E (=)
j, \] are evaluated by

ln a(=)
\(% (=)

j, \)=(2j+1) ?i and E (=)
j, \=exp(% (=)

j, \ �+)�&2

More explicitly

1
2

b0 &&2+e% (=)
j, =$=\2j+1&=$

1
2

+=
:

2M+ ?

+2I {|
�

&�
K1(% (=)

j, =$&%$+i0) ln A (=)
=$ (%$) d%$

+|
�

&�
K2(% (=)

j, =$&%$+i0) ln A (&=)
=$ (%$) d%$= ( j�0) (30)

We present examples of numerical solutions to (28) in Fig. 5. The real
and the imaginary parts of ln A (\)

+ are depicted for M=3, :=1.5.

5. BENCHMARKS

We shall check the nonlinear integral equations analytically for limiting
cases and numerically.

(1) :=0 case
By putting, a(+)

\ (E )=a (&)
\ (E ) the coupled NLIE reduce to an identi-

cal integral equation. Immediately seen, the result coincides with the non-
linear integral equation in ref. 9.

Fig. 5. Left: the real part of ln A (\)
+ , Right: the imaginary part of ln A (\)

+ .
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(2) :=M case
In this case, we have a duality in energy spectra; [E (+)

j ] coincide with
[E (&)

j ], except for E (&)
0 =0 in the latter. This degeneracy can be easily

explained by the following representation of the Hamiltonians, (34, 35)

H(&)(x, :=M )=D-D

H(+)(x, :=M )=DD-

D=
1
i

d
dx

&ixM

Once an eigenvector H(&)(x, M ) � (&)
j =E (&)

j � (&)
j is found, we can con-

struct the eigenvector for H(+)(x, :) with the same energy by � (+)
j&1 :=

D� (&)
j . Only the exception is the j=0 case where D� (&)

j=0=0. It is interest-
ing that the asymptotic form (2) from the WKB type argument is exact for
all x in this case.3

The above facts can be also verified from (29). Note that the rhs can
be treated as the mod 2?i quantity. Then the choice :=M leads to the
same coupled equations under identifications a(+)

+ (%) W a (&)
& (%), a (+)

& (%) W
a(&)

+ (%). This explains the degeneracy of the spectra as it consists both from
the negative and the positive parity contributions. The zero energy case
must be treated more separately. By choosing j=0, ==&=$=&1, :=M,
we find the first term in lhs of (30) is null. So the first order approximation
is % (&)

+, 0=&�. Actually this is exact as we determine the constant terms so
that NLIE are consistent in % � &�. See Remark 3 after (29). This solution
gives the missing energy 0.

Finally we present the preliminary numerical results for M=3.
Table I shows the results from the IMSL package (dsleig.f ), the

(naive) WKB method and those obtained by solving the nonlinear equa-
tions. The agreement is not yet precise enough (typically 3�4 digits). Some
implement is still in need for the numerical accuracy. Nevertheless, the
NLIE data already show much improvement from the (naive) WKB
results.

By the (naive) WKB method, we mean a self-consistent determination
of E (=)

j by

� | p| dx=|
x0

&x0

- E (=)
j &x6&=:x2 dx=\ j+

1
2+ ? (31)
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Table I. First Two Energy Levels Calculated by the IMSL Library, the (Naive)
WKB Method and the NLIE Method. We Choose M=3 and Adopt Various :.

See Asterisk and h for the Text

: IMSL 0th IMSL 1st WKB 0th WKB 1st NLIE 0th NLIE 1st

&2.5000 0.22909 2.3741 h 2.36641 0.22911 2.37385
&2.0000 0.44007 2.7962 0* 2.73228 0.44009 2.7959
&1.5000 0.63524 3.2028 0.17736 3.09594 0.63527 3.2025
&1.0000 0.81664 3.5949 0.38490 3.45603 0.81667 3.59506
&0.50000 0.98599 3.9732 0.59582 3.81142 0.98603 3.97303

0.0000 1.1448 4.3385 0.8008 4.16123 1.1448 4.3382
0.50000 1.2943 4.6917 0.99516 4.50476 1.29436 4.6918
1.0000 1.4356 5.0333 1.1768 4.84147 1.43569 5.0336
1.5000 1.5696 5.3642 1.3456 5.17101 1.5698 5.3640
2.0000 1.6972 5.6850 1.5024 5.49313 1.6973 5.68459
2.5000 1.8189 5.9962 1.6487 5.80773 1.8192 5.99597

where E (=)
j &x6

0&=:x2
0=0. Particularly, for the value with asterisk, this

method has subtlety. Immediately seen, E (=)
0 =0, x0=21�4 is a formal solu-

tion to (31) for j=0, ==&, :=2. It however involves an isolated turning
point of the 2nd order at the origin if E (=)

0 =0, which spoils the simple
application of the condition (31). The value with h has similar difficultly.
We however skip further discussion on the validity on the (naive) WKB
method as it is out of the present subject.

Summarizing, we check the consistency of (29) in some limiting cases
and by numerical methods.

6. SUMMARY AND DISCUSSION

In this report, the eigenvalue problem has been addressed for the 1D
quantum systems of which Hamiltonians include double well potentials.
We have successfully derived the coupled NLIE which determine energy
levels of the systems with potential terms of \:xM&1+x2M at the same
time.

The essence of our strategy is to utilize the following correspondences
between 1D quantum mechanics and 1+1D solvable models,

energy � spectral parameter

Stokes multipliers � transfer matrices

eigenfunctions or derivatives at x=0

� vacuum expectation values of Q operators
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We are then entitled to apply the strong machinery of the latter
developed since Baxter's revolution.

There are several open questions.

1. In this report we confine ourselves to the simplest case :�M. For
:>M, the existence of negative eigenvalues ruins the analyticity assump-
tions on auxiliary functions. Still, formal expressions of NLIE are possible
which are similar to excited states TBA equations. The integration contour
is, however, not so simple as described here. This is an apparent drawback
in actual numerical investigations. The clever choice of auxiliary functions
may be desired.

2. The understanding is lacking on the intrinsic reason why affine
symmetry like Uq( sl@(2)) or Uq(gl@(2 | 1)) comes into play in this simple 1D
quantum mechanical model.

3. This is somewhat related to the above, but is the most intriguing
question. Where is the Yang�Baxter equation in the 1D Schro� dinger
operator problem? Once this is known, the fusion hierarchy, useful in the
present study, is a mere corollary of it.

We hope to answer these in the future publication.
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